On Time-varing Graphical Lasso for Functional Brain Network
Connectivity Dynamics Inference

Hanlin Zhang',

Ivor Cribben!

1 University of Alberta, Edmonton, AB Canada

Modeling how brain connectivity networks evolve over time is a fundamental problem in neuroscience and holds the promise to
reveal certain neuropsychiatric disorders. The estimation of time-varying networks for functional magnetic resonance imaging(fMRI)
datasets is thus of increasing importance and interest. Graphical lasso(glasso) is widely used to capture pairwise structural
dependencies for fMRI time series data. Many glasso variants like sliding-window glasso have been proposed and have achieved
state-of-the-art results. However, they fail to uncover the underlying realistic dynamic structure of the resting-state brain connectivity
network. Here, we introduce a joint glasso named time-varying glasso that captures the smoothly evolutionary patterns of resting-
state fMRI time series. The generated static and dynamic networks are further used to classify patients and controls and we prove
that classification results on dynamic networks outperforms that on static networks. We also develop an efficient implementation
that achieves the scalable and distributed solution is in a divide-and-conquer manner. Experimental results show that the proposed

classification algorithms outperform the widely-used baselines.

Index Terms—Time series analysis; graphical models; functional connectivity; graphical lasso; fMRI

I. INTRODUCTION

Ecently, there has been a surge of interest in estimating

functional brain connectivity networks based on fMRI
time series. Gaussian graphical models(GGM) have been used
to represent the structural dependencies between pairwise
region of interests (ROIs).

Traditionally, the graphical lasso with a sparsity assumption
[8] has been widely used to reveal underlying structures based
on the fact that certain ROIs are restricted to communicate with
the minority of others. In this way, the original graphical model
problem is reduced into a sequence of regression problems.

For time-varying network estimation, a number of methods
have been developed.

For example, [1], proposed a temporally smoothed [regu-
larized logistic regression method named TESLA is proposed
as an approach that allows more flexibility in the smoothness
of graph evolution, the sparsity of graph estimation, and for
both sparsity within the regression function and smoothness
across adjacent networks. For directed networks, the time-
varying dynamic Bayesian networks (TV-DBN) has been pro-
posed [25] for modeling the time-varying network structures
underlying non-stationary biological time series. [24] proposed
a kernel-reweighted logistic regression method (KELLER) for
reverse-engineering the dynamic interactions between genes
based on their time series of expression values. However,
it is noteworthy that the above-mentioned method does not
establish guarantees on smoothly-changing time-consistency
under low-dimension conditions for time-varying GGM.

Machine learning models have been widely used in recent
years for various problems [29]. To tackle the fMRI network
classification problem, [20] proposes a framework based on
Gaussian graphical models and an L1-norm regularized linear
Support Vector Machines (SVM). Their method allows for
pattern classification in both block-related and event-related
fMRI data. [11] uses a sliding window technique to investigate
time-varying brain connectivity for Alzheimer’s disease clas-

sification. [19] introduces an end-to-end deep learning model
for the classification of a neurological disorder from fMRI
data. [17] proposes a convolutional neural network (CNN)
architecture called connectome-convolutional neural network
(CCNN) to distinguish between subject groups in a functional
connectome classification problem [16] used node2vec [10]
to embed the vertexes of graph in the node embedding
space, and transform the brain network into images based on
Magnetoencephalography (MEG) data.

Despite their effectiveness, the previous paper focuses on
problems that are different from our objective in this paper.
Our research question is whether dynamic functional connec-
tivity networks or a static network can perform better in the
network classification problem. To compare their performance,
we apply several methods to different fMRI datasets.

In this paper, our contributions are the following:

1) We introduce the time-varying glasso, a joint glasso with
a Laplacian penalty and a glasso penalty, to better reflect
the underlying evolutionary patterns of fMRI time series
datasets.

2) We compare the estimation results of several commonly
used network estimation methods with respect to classi-
fication accuracy.

3) We employ the Alternating Direction Method of Mul-
tiplierstADMM) to achieve a scalable and distributed
results of the proposed convex optimization problems.

II. METHODS

We formalized our problem as a binary classification prob-
lem where the input is either a static or a dynamic network and
the target is disease status(-1 for brain disorder, 1 for control).
In particular, given fMRI time series of every subject, we aim
to estimate the Gaussian graphical model in both a static and
a dynamic manner using the graphical lasso and its variants.

We use three different models 1. static network
model(estimated by the graphical lasso) 2. sliding window

graphical lasso 3. time-varying graphical lasso. We apply
these models to several fMRI datasets and compare their
performance.

Here, we use the terms network and graph interchangeably.

A. Gaussian graphical model

Probability graphical models have proved an effective way
to represent dependencies between random variables from
real-world data, which is the foundation for further statis-
tical inference and learning [15]. To represent pairwise de-
pendencies among variables, the Gaussian graphical model
(GGM), a Markov Network based on the precision ma-
trix P, is commonly used. Consider a Gaussian distribution
p(X1,X2,...,X,) = N(i;%), and let § = £1 be the
inverse covariance matrix (precision matrix), where 6; ; = 0 if
X_i;)P(X; | X_i;). Precision matrices encode partial cor-
relations, which are more sophisticated dependence measures
compared with a correlation network, and has been proved
to offer high performance on network connectivity estimation
with high-quality fMRI data [22]. The precision matrix can
also be represented by an undirected graph. An undirected
graph is determined accordingly for every subject, in which
precision matrix is interpreted as the symmetric adjacency
matrix A of graph G = (V,E). Variables are treated as
vertexes. To represent pair-wise interactions between variables,
we use non-zero parameters to represent the existence of
edges, while a missing edge between two nodes is equivalent
to a zero entry in the precision matrix.

B. Graphical lasso

We first introduce graphical lasso for the static network.
We assume that the precision matrix P is sparse for real
data problems. It makes empirical sense to do this as brain
ROIs are assumed to interact with only a small group of other
ROIs. It also makes statistical sense as learning is feasible in
high dimensions with a small sample. Based on the sparsity
assumption, the graphical lasso (glasso) for sparse inverse
covariance matrix estimation [8] on fMRI time-series data
can be formulated as follows: Given N multivariate normal
observations of dimension p, with mean p and covariance 3,
the glasso aims to maximize the log-likelihood to uncover
the dependency structure based on multivariate time series
observations:

max logdet§ — Tr(S0) — A||6]], (1)
where the precision matrix and empirical covariance matrix are
denoted as § = ¥~ and S, respectively. # must be symmetric
positive-definite (S%)). To estimate the precision matrix, the
regression process is repeatedly applied for each node and the
zero valued edges are removed. Zero parameters arise through
the {1 penalty. The penalty parameter A regulates the sparsity
level of precision matrices: larger A yields a sparser precision
matrix, while smaller values yield denser matrices.

C. Graphical lasso with sliding window technique

For the dynamic window technique we use and overlapping
window. Specifically, assume that we have N subjects with
T time points and p ROIs for each subject. Following [2],
we estimate a precision matrix using the graphical lasso
in equation 1 independently in every sliding window with
length d € R and step size 6 € R to estimate dynamic
networks ©; = (61,...,0,) for every subject z;. The detailed
experimental settings and parametric choosing are presented
in the simulation section.

D. Time-varying Graphical lasso

Consider a sequence of multivariate observations in RP
sampled from a distribution 2 ~ N(0,%(¢)). Time series are
observed at every even time stamp ¢, to, ..., tr. To construct
structural dependencies, © = {61,0,,...,07} are estimated
from the raw time series datasets, where 6; = Ei_l is the
corresponding precision matrix.

Rather than treating networks as observable invariant enti-
ties, various penalties can be combined with the lasso penalty
as a joint graphical lasso [7] to capture time consistency
between every network snapshot [12]. For example, [1, 14]
combine a lasso penalty and a fused penalty, thus enforcing
both smoothness and sparsity. Perturbed-node joint graphical
lasso can be used to detect single nodes relocations [18].
In [7], the group graphical lasso and fused graphical lasso
are presented to cause global restructuring at a few times-
tamps. Following the naive assumption that each temporal
snapshot of the brain network is completely independent
and the generating process is time-invariant leads to high
variance due to sample scarcity. In dynamic cases, instead of
using the traditional sliding window technique which assumes
networks to be independent of their neighborhoods, we utilize
time-varying graphical lasso (TVGL) for estimation. Our key
assumption is that the time-varying networks vary smoothly
across time, therefore temporally adjacent networks are able
to borrow information from each other.

Assuming a smoothly changing pattern holds, we utilize
the Laplacian penalty function ®(X) =3_, . X 7, (a sum-of-
squares loss function that penalizes large deviations and en-
courages slight changes between every adjacent network[28])
with the alternating direction method of multipliers(tADMM)
technique [3] to achieve a distributed and scalable solution.
Estimating a series of time-evolving graphs using the joint
graphical lasso leads to the following convex optimization
problem:

T
max logdet 0;—Tr(S0;) = A|6i[l,+8 > ®(0;—0;-1) (2)
t=2
where 6; is the network at every time stamp. « and lambda
control the sparsity and time consistency of dynamic networks,
respectively. The convexity of both the lasso penalty and the
Laplacian penalty guarantees global optimality without being
plagued by local minima. The Laplacian quadratic penalty
encourages smoothness across coefficients associated with
the correlated predictors, which guarantees that the graphical
models at adjacent time points are similar enough such that we

can borrow information across time points by reweighting the
observation[28], this phenomena corresponds to our resting-
state fMRI time-series evolutionary pattern.

E. Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM)
is an algorithm that solves convex optimization problems by
breaking them into smaller pieces, each of which are then
easier to handle [3]. After rewriting the original equation,
glasso problems is cast as a problem which is block separable.
Using ADMM, equation 1 can be rewritten as

max

log det § — Tr(S0) — A||€|,

3)
st. 6—Q=0, 08",

where 2 denotes consensus variables.

And the augmented Lagrangian is £(0,Q,U) =
ST (logdetd; — Tr(S6;)) — N|Q|l, + pUT(0 — Q) +
516 — 7

The procedure can be summarized as algorithm 1.

Similarly, with the consensus variables) =
{Q0,01,9} = {(1,0,---,270),
(Q1,.-,Qr-11),(Q22,...,072)}, the problem 2 can be
rewritten as

T
max Y _(logdet 6; — Tr(S6;)) — A||Qiol|,
i=1
T
+ﬂz@(9i,2 - Q1))
i=2
S.t. GifQi’():O,F)ESf’H_ Vi=1,...,T
(QL—1,17QZ,2) - (91_1702) vl - 27...,T
By introducing the scaled dual variable U =

{Uo, Ul, UQ} = {(UL(), ey UT,0)7

(Ul,la ey UT71,1)7 (UYQ’Q7 ey UT,Q)} and the ADMM penalty
parameter p € RT, the corresponding augmented Lagrangian
[12] is:

T
L(0,Q,U) = (logdet; — Tr(S6;)) — A|| Q0|
=1

(2

T
+8Y (2 —Qi—11)
i—2
T
&)

+0/23(16: — Quo + Uiol3)

i=1

T 2
+p/2 Z(HHFI — Q11+ U¢71,1HF

i—2

Ui % +]|6: = Qa2

As described in algorithm 2, by separating equation 1 and 2
into two blocks of variables, 6 and €2 , global convergence is
guaranteed in our ADMM algorithm [3].

Algorithm 1 ADMM for solving the graphical lasso

1: Input ADMM penalty parameter p
2: Output network 6
3: procedure GLASSO(p)
4: Intialize 6°, Q°, U°
5: for k = 0 to convergence do
6: gr+1 = argmin —logdetf +
, oest |

p/2H9 —Q 4 U+ %SHF

7: QR+l = argmin A|Q[, +
) Q0,821,022
o~ a4 20
P F
Ukt = gk + p(9t+1 _ Qt+1)
: end for

10: return 6

11: end procedure

Algorithm 2 ADMM for solving time-varying graphical lasso

1: Input ADMM penalty parameter p > 0
2: Output Time-varying network set ©

3: procedure TVGL(p)

4: Intialize 6°, Q°, U°

5 for k = 0 to convergence do
6: OF+1 = argmin £(0, QF, U¥)
oest,
ngJrl
7: QL = | QF | = argmin £(6F 1, Q, UF)
Qk+1 Q0,01,2
2
g uj
8: Ukt Uyt = Url +
Uyt Uy
k+1 k+1
k+1 %o ;ﬁo k+1
(0}9+17 o ,9%?11) B QI%Jrl
(037, ..., 007) — Q3
9: end for
10: return ©

11: end procedure

F. Problem scenario

The workflow of the proposed framework can be sum-
marized in Figure ??. We formulate our problem as a
binary graph classification problem, a supervised learning
task: Given a static or dynamic fMRI network(s) as data
input, which can be denoted as x = G or x = G =
{G1,G3,...,G,} and corresponding label(s), we aim to
assign proper labels to every graph. Specifically, given the
following dataset, D = ((G1,y,), (G2,¥s),---,(Gy,y,)) or
(((G(l)v G(2)7 s ’G(T)>1a yl)v ((G(l)v G(Q)v s 7G(T))27y2)a

.,((G(l),G(Q),...,G(T))n,yn)), we aim to find a non-
linear and complex mapping f for the classification task:
f(D) =Y where Y = {y;}, and y; = {-1,1}.

In data processing, to achieve interpretability, we convert
the off-diagonal elements of the precision matrix into partial

correlations P =
computed using

O, with elements denoted by 7;; and

Dij (6)
\/PiiDjj

Tijz—

After standardization, off-diagonal elements Vr;; (i # j) are
extracted and flattened into a single high-dimensional connec-
tivity feature vector X? or matrix M? = [X7, X5, ... X7]
as the input of our model, where p = n(n —1)/2.

Both simulation and experiments on real datasets show the
advantage of our proposed approach.

G. Classifers

1) Support vector machine

Support vector machine(SVM) classifier is a popular super-
vised learning model due to its generalization capability and
high classification accuracy. [27, 6]

In order to construct the optimum hyperplane that separates
data points correctly, the functional margin is maximized such
that the generalization error of the classifier is minimized.

Specifically, for any ¢+ = 1,2,...,N and & > 0, the
optimization of margin to its support vector can be converted
into a quadratic programming problem

1 N
2
§|VU|| +CY &
=1

st yi(wla; +b)>1-¢&

)

where &; is the slack variable and parameter C' represents mis-
classified sample of the corresponding sample of the margin
hyperplane and cost of penalty, respectively.

For a non-linear classification problem, SVM can efficiently
perform a non-linear K (z,,z;) to maximum-margin hyper-
planes, implicitly mapping their inputs into high-dimensional
feature spaces by transforming function with the following dot
product ¢(x) such that data can be separated easily.

K(xnaxi) = ¢($n)¢(xz) (3

Therefore the hyperplane function can be written as
N
n=1

where z,, is support vector data. o, is Lagrange multiplier
and y,, denotes the label.

Here we choose sigmoid kernel due to its performance on
our datasets, and the corresponding kernel function is

K(xp,z;) = tanh(y(zn, ;) + 1) (10)

where C,~,r are hyperparameters.

2) XGBoost

XGBoost is a scalable tree boosting system which achieves
state-of-the-art results in machine learning challenges[5]. For
the given dataset G = {(G;,y;)}, we perform adaptive
training, a.k.a boosting for classification. A tree ensemble can
be denoted as follows:

Yi = ¢(Gi) = ka(Gi)

k=1

(1)

where fi, € F, F is the space of classification and regression
trees(CART)

To learn the tree ensembles in the model, a differentiable
convex loss function ! and penalty Q = AT + %/\||w||2(T is
the number of leaves in the tree) are introduced, such that the
following regularized objective is minimized:

LO=S"1G + f(Ga)y) +QF) (12)
=1

Additive training is performed by greedily adding the f;
that most improves the model. A second-order approximation
can be used to quickly optimize the objective further and
loss reduction after the split is used for evaluating the split
candidates[5].

3) Long-short term memory

Rather than hand-crafting features, we leverage ideas from
representation learning and use deep models to automatically
learn relevant features from data[9].

Long short-term memory(LSTM) is a kind of recurrent
neural network(RNN), which is widely used for sequential data
like time series. An LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate.

fi =0q(Wsxy + Uyphy—1 + by) (13)

it = og(Wixy + Ushy—1 + b;) (14)

or = 0g(Woxy + Ushy—1 + b,) (15)

¢t = fr ©cio1 + it © 0c(Wexy + Uchy—1 + bc) (16)
hi = 0y © op(cy) (17)

where the operator © denotes element-wise product and sub-
script ¢ means time step. Variables can be summarized as:
xz; € R? is the input vector to the LSTM unit. f, € R”,
i € R", o, € R" is the activation vector of forget gate, input
gate, output gate respectively. h; € R is the hidden state
vector and ¢; € R is the cell state vector. During training,
the weight matrices W € R"*? U € R"*" and bias vector
parameters b € R" are learned, where d and h refer to the
number of input features and hidden units, respectively.

The benefit of using LSTMs for sequence classification is
that they can learn from the raw time series data directly,
and in turn do not require domain expertise to manually
engineer input features. The model can learn an internal
representation of the time series data and ideally achieve
comparable performance to models fit on a version of the
dataset with engineered features.

Figure 1 | Framework of our method.

-

@ ROls Extraction

Graphical lasso

~

@ Classification

(¥
R-MRI : 7 @ Network Estimation

<2

&

Time-varing Glasso

@ Timeseries Extraction

<&

\
\—

o

&® &

_
&

@ Glasso with sliding window

Time

@ Feature Extraction

" Standardizati
andardization Flaﬁen
—_—

Extraction

H. Parameter tuning

Due to the data scarcity, 10-fold cross validation (CV) and
leave-one-out cross validation (LOOCV) are employed in the
ADNI and Dyslexia dataset, respectively.

Larger A values enforce a network structure with many ze-
ros, while smaller values yield denser matrices. A sparse graph
effectively limits the degree of freedom of the model, which
makes structure recovery possible given small sample size. For
the sliding window, using a wider bandwidth (window-length)
parameter d provides more samples to estimate the network,
but sharp changes are more likely to miss the network. In
contrast, using a narrower bandwidth parameter makes the
estimate more sensitive to sharp changes, but this also leads
to larger variance due to the reduced sample size [24].

We employ the Akaike information criterion (AIC) for
choosing A and [that trades off between the fit to the data
and the model complexity [21]. The A chosen varies across
subjects. A and /3 empirically are around 0.01 and 0.1 [4].

For the parameters of classifiers, rather than search over a
grid of parameters, we use both Bayesian optimization [23]
and cross-validation for tuning. Particularly, we use 10-fold
cross validation for parameter choosing in the ADNI dataset
and LOOCYV for the dyslexia dataset. Bayesian optimization,
trading off exploration and exploitation, is proved to be an
automatic approach that can optimize the performance of
many learning algorithms to the problem at hand effectively
[23]. More specifically, it works by treating the objective
function as a random function and place a prior over it, which
demonstrates our belief about the behavior of the function.
After gathering the function evaluations, which are treated
as data, the prior is updated to form the posterior distribu-
tion over the objective function. The posterior distribution is
used to construct an acquisition function that determines the
next query point. As the number of observations grows, the
posterior distribution improves, and the algorithm becomes
more certain of which regions in parameter space are worth
exploring and which are not. At each step, a Gaussian Process

is fitted to the known samples, and the posterior distribution,
combined with an exploration strategy is used to determine
the next point that should be explored.

III. FMRI DATA

We conduct experiments on the two fMRI datasets and the
result shows the advantages of our proposed approach. For
static network estimation, glasso is employed on the whole
timeseires. On the other hand, a window with length d = 40
is specified in the dynamic cases.

In TVGL, we use the TVGL Python solver [12] on top
of SnapVX, an open-source convex optimization package.
Our solver takes as inputs the multivariate time series and
the regularization parameters, and it returns the time-varying
network. In both static and dynamic cases, we follow the
strategy described in the method section. Specifically, for
example, in the static case, we extract as input off-diagonal
elements, a single 55 dimensional vector, from the Dyslexia
dataset with 11 dimension.

A. dataset overview

The fMRI time series datasets include two parts: the small
Dyslexia dataset contains 23 subjects(9 controls and 14 pa-
tients) with 11 ROIs(features) and 200 time points, while large
ADNI dataset contains 56 subjects(30 controls and 26 patients)
with 10 ROIs(features) and 135 time points. The ROIs chosen
in both datasets are from AAL atlas.

The ADNI dataset used this paper were obtained from the
ADNI database ! We preprocessed the ADNI data using both
FSL and AFNI. The detailed steps are summarized in [13].

IV. RESULTS

The experimental results show that our proposed dynamic
glasso methods outperform the static one with respect to the
classification accuracy.

! (http://adni.loni.usc.edu)

Table I Classification results on ADNI dataset

Cases Static Dynamicl Dynamic2 Dynamic3 TVGL
XGBoost 58,93 66,07 66,07 76,79 67,86
SVM 57,14 57,14 57,14 57,14 57,14
RF 67,89 66,07 57,14 73,21 64,29

Table II Classification results on Dyslexia dataset

Cases Static Dynamicl ~ Dynamic2 Dynamic3 TVGL
XGBoost 60,42 78,13 60,42 60,42 60,42
SVM 60,42 60,42 60,42 60,42 60,42
RF 63,54 76,04 70,83 70,83 70,83

A. Raw time series results

We perform minmax scale on the time series of every
subject and then feed them into the LSTM unit. The LSTM
achieves 58% classification accuracy in the case of 10-fold
cross-validation on the ADNI dataset.

Due to the data scarcity, LSTM performs badly despite
we reduce the number of hidden units and use regularization
techniques like dropout[26].

B. Static results

We use LOOCYV to evaluate our performance. Specifically,
we use 22 training set to

For parameter choosing, like sparsity parameter «, we
specify a list from 0.01 to 1.00 with step size equals to 0.01
and further use cross validation to choose among these values.

C. Dynamic results

In dynamic cases, we stack multiple consistent networks per
subject into a feature vector for training Specifically, network
size of 5, 10, 20 is estimated and the corresponding window
length for Dyslexia and ADNI dataset is d = 40 and step size
is 0, 5, 10, leading to dynamic network sets with the amount
of 2,9, 19 and 3, 10, 19 respectively.

V. CONCLUSION

In this work, we investigate the effectiveness of static and
dynamic network estimation techniques in neuropsychiatric
disease classification problems. We compare three kinds of
network estimation methods in both static and dynamic cases
with respect to classification accuracy. Experimental results
prove that classification on dynamic networks consistently
outperforms static ones. Our method also provides efficiency
guarantees on estimations using a decentralized optimization
technique, which also applies to a larger scale optimization
problem.

REFERENCES

[1] Amr Ahmed and Eric P Xing. “Recovering time-varying
networks of dependencies in social and biological stud-
ies”. In: Proceedings of the National Academy of Sci-
ences 106.29 (2009), pp. 11878-11883.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[17]

Elena A Allen et al. “Tracking whole-brain connectivity
dynamics in the resting state”. In: Cerebral cortex 24.3
(2014), pp. 663-676.

Stephen Boyd et al. “Distributed optimization and sta-
tistical learning via the alternating direction method of
multipliers”. In: Foundations and Trends®) in Machine
learning 3.1 (2011), pp. 1-122.

Biao Cai et al. “Capturing Dynamic Connectivity from
Resting State fMRI using Time-Varying Graphical
Lasso”. In: IEEE Transactions on Biomedical Engineer-
ing (2018).

Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable
tree boosting system”. In: Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining. ACM. 2016, pp. 785-794.

Corinna Cortes and Vladimir Vapnik. “Support-vector
networks”. In: Machine learning 20.3 (1995), pp. 273—
297.

Patrick Danaher, Pei Wang, and Daniela M Witten. “The
joint graphical lasso for inverse covariance estimation
across multiple classes”. In: Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology) 76.2
(2014), pp. 373-397.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
“Sparse inverse covariance estimation with the graphical
lasso”. In: Biostatistics 9.3 (2008), pp. 432-441.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

Aditya Grover and Jure Leskovec. “node2vec: Scal-
able feature learning for networks”. In: Proceedings of
the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2016,
pp. 855-864.

Hao Guo et al. “Alzheimer classification using a mini-
mum spanning tree of high-order functional network on
fMRI dataset”. In: Frontiers in neuroscience 11 (2017),
p. 639.

David Hallac et al. “Network inference via the time-
varying graphical lasso”. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM. 2017, pp. 205-213.
Brian Hart et al. “A longitudinal model for functional
connectivity networks using resting-state fMRI”. In:
Neurolmage 178 (2018), pp. 687-701.

Mladen Kolar et al. “Estimating time-varying net-
works”. In: The Annals of Applied Statistics 4.1 (2010),
pp. 94-123.

Daphne Koller and Nir Friedman. Probabilistic graphi-
cal models: principles and techniques. MIT press, 2009.
Lu Meng and Jing Xiang. “Brain Network Analysis
and Classification Based on Convolutional Neural Net-
work”. In: Frontiers in computational neuroscience 12
(2018).

Regina J Meszlényi, Krisztian Buza, and
Zoltan Vidnyanszky. “Resting state fMRI functional
connectivity-based classification using a convolutional
neural network architecture”. 1In: Frontiers in
neuroinformatics 11 (2017), p. 61.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Karthik Mohan et al. “Structured learning of Gaussian
graphical models”. In: Advances in neural information
processing systems. 2012, pp. 620—628.

Atif Riaz et al. “Deep fMRI: An end-to-end deep
network for classification of fMRI data”. In: 2018 IEEE
15th International Symposium on Biomedical Imaging
(ISBI 2018). 1IEEE. 2018, pp. 1419-1422.

Maria J Rosa et al. “Sparse network-based models for
patient classification using fMRI”. In: Neuroimage 105
(2015), pp. 493-506.

Yosiyuki Sakamoto, Makio Ishiguro, and Genshiro
Kitagawa. “Akaike information criterion statistics”. In:
Dordrecht, The Netherlands: D. Reidel 81 (1986).
Stephen M Smith et al. “Network modelling methods
for FMRI”. In: Neuroimage 54.2 (2011), pp. 875-891.
Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
“Practical bayesian optimization of machine learning
algorithms”. In: Advances in neural information pro-
cessing systems. 2012, pp. 2951-2959.

Le Song, Mladen Kolar, and Eric P Xing. “KELLER:
estimating time-varying interactions between genes”.
In: Bioinformatics 25.12 (2009), pp. 1128-i136.

Le Song, Mladen Kolar, and Eric P Xing. “Time-varying
dynamic bayesian networks”. In: Advances in neural
information processing systems. 2009, pp. 1732-1740.
Nitish Srivastava et al. “Dropout: a simple way to pre-
vent neural networks from overfitting”. In: The journal
of machine learning research 15.1 (2014), pp. 1929-
1958.

Johan AK Suykens and Joos Vandewalle. “Least squares
support vector machine classifiers”. In: Neural process-
ing letters 9.3 (1999), pp. 293-300.

Kilian Q Weinberger et al. “Graph Laplacian regu-
larization for large-scale semidefinite programming”.
In: Advances in neural information processing systems.
2007, pp. 1489-1496.

Dong Wen et al. “Deep learning methods to process
fMRI data and their application in the diagnosis of cog-
nitive impairment: a brief overview and our opinion”.
In: Frontiers in neuroinformatics 12 (2018), p. 23.

